A 2-D MODEL OF GLOBAL AEROSOL TRANSPORT

https://doi.org/10.1016/B978-0-08-031448-8.50050-1Get rights and content

Abstract

The distribution of aerosol particles in the troposphere is described. Starting with long term mean seasonal flow and diffusivities as well as temperature, cloud distribution (six cloud classes), relative humidity and OH radical concentration, the steady state concentration of aerosol particles and SO2 are calculated in a two-dimensional global (height and latitude) model. The following sources and sinks for particles are handled: direct emission, gas-to-particle conversion from SO2, coagulation, rainout, washout, gravitational settling, and dry deposition. The sinks considered for sulphur emissions are dry deposition, washout, rainout, gasphase oxidation, and aqueous phase oxidation. Model tests with the water vapour cycle show a good agreement between measured and calculated zonal mean precipitation distribution.

The steady state concentration distribution for natural emissions reached after 10 weeks model time, may be described by a mean exponent α = 3.2 near the surface assuming a modified Junge distribution and an increased value, α = 3.7, for the combined natural and man-made emission. The maximum ground level concentrations are 2000 and 10,000 particles cm−3 for natural and natural plus man-made emissions, respectively. The resulting distribution of sulphur dioxide agrees satisfactorily with measurements given by several authors.

References (0)

Cited by (0)

View full text